数字孪生未来发展趋势
1、数字孪生在智能制造中的典型应用
1)数字孪生设计物料堆放场
在电厂、钢铁厂、矿场都有物料堆放场。传统上,设计这些堆放场时,设计需求是人为规划的。堆放场建设运行后,却常常发现当时的设计无法满足现场需求。这种差距有时会非常大,造成巨大浪费。
为了应对这一挑战,在设计新的物料堆放场时,ABB公司使用了数字孪生技术。从设计需求开始,设计人员就利用物联网获得的历史运行数据进行大数据分析,对需求进行优化。在设计过程中,ABB借助于CAD/CAE/VR等技术开发了物料堆放场的数字孪生(图9)。该数字孪生实时反映了物料传输、存储、混合、质量等随环境变化的参数。针对该物料场的设计并不是一次完成的,而是经过多次优化才定型的。在优化阶段,在数字孪生中对物理场进行虚拟运行。通过运行反映出的动态变化,提前获得运行后可能会出现的问题,然后自动改进设计。通过多次迭代优化,形成最终的设计方案。
通过运行过程证明,通过数字孪生设计的新方案可以更好地满足现场需求。而且,结合物联网,设计阶段的数字孪生体会在运行阶段继续使用,不断优化物料场的运行。
2)数字孪生机床
机床是制造业中的重要设备。随着客户对产品质量要求的提高,机床也面临着提高加工精度、减少次品率、降低能耗等严苛的要求。
在欧盟领导的欧洲研究和创新计划项目中,研究人员开发了机床的数字孪生体,以优化和控制机床的加工过程。除了常规的基于模型的仿真和评估之外,研究人员使用开发的工具监控机床加工过程,并进行直接控制。采用基于模型的评估,结合监视数据,改进制造过程的性能。通过控制部件的优化来维护操作、提高能源效率、修改工艺参数,从而提高生产率,确保机床重要部件在下次维修之前都保持良好状态。

在建立机床的数字孪生体时,利用CAD和CAE技术建立了机床动力学模型(图11)、加工工程模拟、能源效率模型和关键部件寿命模型。这些模型能够计算材料去除率和毛边的厚度变化,以及预测道具破坏的情况。除了优化道具加工过程中的切屑力外,还可以模拟道具的稳定性,允许对加工过程进行优化。此外,模型还预测了表面粗糙度和热误差。机床数字孪生体能把这些模型和测量数据实时连接起来,为控制机床的操作提供辅助决策。机床的监控系统部署在本地系统中,同时将数据上传至云端的数据管理平台,在云平台上管理并运行这些数据。

图11 数字孪生机床的液压控制系统
2、数字孪生未来发展趋势
结合当前数字孪生的发展现状,未来数字孪生将向拟实化、全生命周期化和集成化3个方向发展。
1)拟实化——多物理建模
数字孪生是物理实体在虚拟空间的真实反映,数字孪生在工业领域应用的成功程度取决于数字孪生的逼真程度,即拟实化程度。产品的每个物理特性都有其特定的模型,包括计算流体动力学模型、结构动力学模型、热力学模型、应力分析模型、疲劳损伤模型以及材料状态演化模型。如何将这些基于不同物理属性的模型关联在一起,是建立数字孪生、继而充分发挥数字孪生模拟、诊断、预测和控制作用的关键。基于多物理集成模型的仿真结果能够更加精确地反映和镜像物理实体在现实环境中的真实状态和行为,使得在虚拟环境中产品的功能和性能并最终替代物理样机成为可能,同时还能够解决基于传统方法预测产品健康状况和剩余寿命所存在的时序和几何尺度等问题。多物理建模将是提高数字孪生拟实化程度、充分发挥数字孪生作用的重要技术手段。
2)全生命周期化——从产品设计和服务阶段向产品制造阶段延伸
基于物联网、工业互联网、移动互联等新一代信息与通信技术,实时采集和处理生产现场产生的过程数据,并将这些过程数据与生产线数字孪生进行关联映射和匹配,能够在线实现对产品制造过程的精细化管控;同时结合智能云平台以及动态贝叶斯、神经网络等数据挖掘和机器学习算法,实现对生产线、制造单元、生产进度、物流、质量的实时动态优化与调整。
3)集成化——与其他技术融合
数字线程技术作为数字孪生的使能技术,用于实现数字孪生全生命周期各阶段模型和关键数据的双向交互,是实现单一产品数据源和产品全生命周期各阶段高效协同的基础。美国国防部将数字线程技术作为数字制造最重要的基础技术,工业互联网联盟也将数字线程作为其需要着重解决的关键性技术。当前,产品设计、工艺设计、制造、检验、使用等各个环节之间仍然存在断点,并未完全实现数字量的连续流动;MBD技术的出现虽然加强和规范了基于产品三维模型的制造信息描述,但仍主要停留在产品设计阶段和工艺设计阶段,需要向产品制造/装配、检验、使用等阶段延伸;而且现阶段的数字量流动是单向的,需要数字线程技术实现双向流动。因此,融合数字线程和数字孪生是未来的发展趋势。